
Course evaluations
Final Exam preview

Work on SpellChecker

Please commit your outline of your
presentation if you haven’t done so
Tomorrow, I’ll have you check those items on
grading checklist to help me not miss anything.

Questions?

Today:
◦ Final exam review
◦ Course evaluations
◦ Project time

Order of team presentations will be randomly
chosen.
Person who presents for each team will be
randomly chosen.
At most 7 minutes, plus time for questions.
Fill out a form for each team's presentation
(except your own)
No one but the presenters should use a
computer during the presentations

Two parts, like the previous exams
My timing aims:
◦ "Get it working" programming part:

Average (B) student can get 90% of the points in 2
hours.
C students can get 80% of the points in the 3 hours.

◦ Other part:
Most students can complete it in 45 minutes
All students can get 95% of the points they can earn in
less than an hour.

* By "B student" or "C Student", I mean students
who will have that grade at the end of the term;
not those who have it going into the exam.

Covers the entire term
But since you have not been tested at all on
the material since the last exam, it will count
a disproportionate percent (approximately
30-40%) of the exam points.
More than on the previous exams, there may
be questions that ask you to think and apply
course material to a new situations

Same as on previous exams
◦ First part

An 8.5 by 11 inch piece of paper on which you have
written anything you want.
A calculator
Any quantity of blank paper

◦ Programming part
Books, notes, course web pages and ANGEL pages,
SUN's Java pages, any other pages that you have
bookmarked before the exam.
No Google (or similar) searches, IM, mail, chat, etc.
No use of headphones or earphones

Counts a little more than either of the
previous exams (16% vs 12% of the total
grade)
If your final exam percentage is significantly
higher than your overall average for the
course, I will "bump up" your average by a
few points.
◦ Especially if your average is just below a grade

cutoff point.
◦ Some people finally "get it all together" at the end

of the course.

You must earn a C grade on at least one
exam in order to earn a C in the course.
◦ If you did not earn at least 70 points on the first

exam and did not earn at least 60 points on the
second exam, you must have a C on the Final in
order to get a C for the course.

You must have a passing average on the
exams to pass the course.
◦ If you did not earn a total of 110 points on the two

exams, you will need a high enough score on the
Final to bring your average up to the passing level
(55%). Are you in this situation?
◦ If you are barely above the passing exam average

mark, you need to make sure that you do not dip
below it as a result of the Final exam. Are you in
this situation?

You must demonstrate that you can
individually write and debug simple Java
programs at the level of this course in order
to pass. The exams will be the usual way to
do this.
◦ If your total for the programming parts of the two

exams is less than 60, you have not yet
demonstrated this competence.
◦ On the programming part of the Final, you will need

to get 50% of the points, or 80% of the class
average (whichever is lower) in order to pass the
course.

Questions will mostly be similar in style to
written Homework problems and ANGEL
quizzes
Some may actually be problems from written
Homework and ANGEL quizzes
Some questions may be like "why does Java … ?"
or "Why would you choose …?"

Possible topics for CSSE 220 Exam 2
UML Class Diagrams
Terminology from chapters 1-4
Dynamic Binding and Polymorphism
Java Generics via Type Parameters (Generic classes,
interfaces, methods)
Arrays class and Collections class – providers of static
methods for search, sort, max, min, etc.
Measuring runtime efficiency
Big-oh, big-omega, big-theta (and the method of
using limits to show relationships)
Inheritance to the max, as in BallWorlds

Function Objects (including Comparator). Compare and
contrast Comparator and Comparable interfaces.
Algorithms and running time for sequential and Binary search,
basic ideas of interpolation search.
Abstract data types and Data Structures: specification,
implementation, application.
Implementation of low-level data structures, such as integers
and arrays.
Data Structures Grand Tour: Know the basic definitions of
each of the structures, along with big-oh running time for
their main operations.
Collections framework, including the main interfaces
(Collection, List, Set, Map)
The difference between a Set and a Map, and the practical
differences between the "hash" and "Tree" versions of those.
Iterator and ListIterator interfaces
Implementing a list as an array list
Implementing a list as a linked list (with and without a header
node)

Recursion
Sorting
◦ Know insertion, bubble, selection sorts at the level

of being able to write the code
◦ Know how Shell Sort and Merge Sort work
◦ Know how to analyze all but Shell
Binary files, serialization

Create or modify a simple GUI program
◦ Could include buttons, text fields, labels, text areas,

drawing, panels, layout (flow, border, grid), listeners
(mouse, action, key)

Data Structure use, implementation, type
parameters
◦ You know I’m going to ask lots on this!
Comparators and other function objects
Searching and sorting
1D and 2D matrices like HW problem
Non-text IO, reading and writing objects

Weiss chapters 1-4 (except 4.7.5, 4.7.6)
Sections 5.1, 5.2, 5.4-5.8 (you do not have to
know the formal definition of big-oh and its
cousins or do any proofs, but you should know
the informal definitions)
Chapter 6
Sections 7.1, 7.3, 8.1-8.5 (not 8.4.1)
GUIs and Events
Implementation of Stack, Queue, ArrayList, and
especially LinkedList
Object I/O

Consider these
◦ 6.14, 6.15, 6.17, 6.19, 6.20, 6.21, 6.22
◦ 8.1abc, 8.4abc, 8.5abc, 8.6abc
◦ 15.9
◦ 16.1, 16.3, 16.6, 16.7, 16.9
◦ 17.5, 17.6, 17.12, 17.17, 17.18
◦ Written problems from the previous exams

Most of you have worked very hard and
learned a tremendous amount.
You have moved from needing a lot of hand-
holding toward being confident, competent,
independent programmers
I think if you can do the written and
programming exercises that I have given you,
you are ready to compete with students at
this level from any college in the country.

